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Abstract

Spectral decomposition methods are applied to compute accurately the rms values for the control forces,
suspension strokes and tyre deflection at front and rear in a half-car model with preview. The vehicle model
is assumed to be fitted with active suspension and travelling at constant speed on a random road and the
control is assumed to be optimal.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Explicit formulae for the computation of rms values for control force, suspension stroke and
tyre deflection in the case of a quarter-car model with an optimally controlled active suspension
without preview are given in a technical note by Thompson and Davis [1]. The computations only
require the solution of Riccati and Lyapunov matrix equations. The rms values determined
depend on the vehicle speed and road roughness and a simple formula is obtained for the
performance index. Subsequently an expression for the performance index of a quarter-car model
see front matter r 2004 Elsevier Ltd. All rights reserved.
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with preview was obtained by Thompson and Pearce [2], and this was later extended to the
determination of the performance index for a half-car model with preview active suspension [3].

In a further development [4], the rms values for force, stroke and deflection in a quarter-car
model with preview have been shown to be obtainable analytically through the solution of a
Lyapunov matrix equation using Matlab computer programs. Very accurate results were obtained
by this method except in the case of low vehicle speed (Vo2:5m=s). The determination of the rms
values in the case of a half-car model with preview is accomplished by direct matrix manipulations
employing a composite state 16-vector and corresponding composite state equation [5]. The
solution in this case while analytically elegant and compact also gives very accurate rms values at
all except very low vehicle speeds (Vo3m=s approx.)

The method which we introduce in the following yields accurate rms values at all speeds and
does not require the solution of Lyapunov type matrix equations or the manipulation of 16� 16
composite matrices. The method is based on the spectral decomposition of a matrix as applied to
the case of the half-car model with preview.
2. Road input and response

For a variety of roads the power spectral density of the random disturbance at a road to tyre
contact point is approximated by

FðoÞ ¼
cV

o2
m2s=rad (1)

where c is the road roughness constant and V is the velocity of travel. This equation represents
integrated white noise which is useful as a theoretical input signal due to the fact that the mean-
square value of any output signal of interest is simply related to the integral-square value of the
corresponding response to a unit step in the road profile traversed at the same speed. For example,
the mean-square value of the control force at either the front or the rear suspension due to the
random road excitation is

hu2
r ðtÞi ¼ 2pcV

Z 1

0

u2
s ðtÞdt (2)

where usðtÞ is the control force at the same position due to a unit step in the road profile [1,5].
Whether the 2p factor is included or not depends on how the power spectral density is defined [6].
It is to be noted that for the half-car model where the same input is applied to the front tyre
contact point and, after a speed-dependent interval Td ; at the rear tyre contact point, the output
yðtÞ at any point of the system is by superposition of the sum of the outputs due to each of these
inputs acting separately. In applying (2) therefore, to model the half-car model, both urðtÞ and
usðtÞ are taken as the values of the control forces at the same position and similarly for any other
variables of interest.

A convenience of (1) is that all roads, rough or smooth, may be represented by a single
parameter c. Comprehensive trade-off performance plots for different vehicle speeds and road
conditions with rms values for suspension stroke, tyre deflection, support point accelerations, etc.
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are presented by Hrovat [7,8] employing data obtained through digital simulation. Our object
here, of course, is to derive this data through direct matrix computations.
3. The state equations

In the model shown in Fig. 1, V is the vehicle speed and Ps is the sensor preview distance.
The road input xrðtÞ ¼ UðtÞ is a unit step function which is detected by the preview sensor at
the initial time t ¼ 0: The ensuing disturbance inputs at the tyre contact points are then
represented by

w1 ¼ xaðtÞ ¼ Uðt � T1Þ; w3 ¼ xbðtÞ ¼ Uðt � T2Þ;

where the preview time is T1 ¼ Ps=V ; the delay time is Td ¼ L=V and T2 ¼ T1 þ Td : The
wheelbase is L ¼ a þ b; where a and b are the distances from the centre of gravity of the body
from the front and rear support points, respectively.

The car is divided longitudinally by a vertical plane so that M is half the total body mass and J

is half the pitch moment of inertia about a transverse axis through the centre of gravity. The front
and rear unsprung masses M1 and M3 each correspond to a single wheel, while S1 and S3

represent the tyre spring rates. In considering the vertical motions, the control forces u1 and u3 are
assumed to be applied between the wheels and the body at the front and rear, respectively. The
vertical displacements x1–x4 are measured from equilibrium on a level road and together with the
corresponding velocities x5 to x8 form a set of eight state variables which are all zero initially.

The state equations for the half-car model may be derived as

_x1 ¼ x5; _x2 ¼ x6; _x3 ¼ x7; _x4 ¼ x8;

_x5 ¼ S1ðxa � x1Þ=M1 � u1=M1;

_x6 ¼ au1 þ bu3;
Vu u
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Fig. 1. Half-car model with preview encountering a unit step road input.
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_x7 ¼ S3ðxb � x3Þ=M3 � u3=M3;

_x8 ¼ bu1 þ gu3;

a ¼ 1=M þ a2=J; b ¼ 1=M � ab=J; g ¼ 1=M þ b2=J:

The performance index is defined as the infinite integral

P ¼

Z 1

0

½r1u2
1 þ r3u2

3 þ q1ðx1 � xaÞ
2

þ q2ðx1 � x2Þ
2
þ q3ðx3 � xbÞ

2
þ q4ðx3 � x4Þ

2
�dt: ð3Þ

With the above notation, the state vector x ¼ ½x1 x2 x3 x4 x5 x6 x7 x8�
0; the control force vector

u ¼ ½u1 u3�
0; and the disturbance input vector w ¼ ½w1 w3�

0 ¼ ½xa xb�
0: A transformation to relative

displacements may be achieved by defining new state variables

z1 ¼ x1 � xa; z5 ¼ x3 � xb;

z2 ¼ x2 � x1; z6 ¼ x4 � x3;

z3 ¼ x5; z7 ¼ x7;

z4 ¼ x6; z8 ¼ x8:

The new state vector z ¼ ½z1 z2 z3 z4 z5 z6 z7 z8�
0 and the matrix transformation equation is

z ¼ Cxþ Dw;

where C is an (8� 8) matrix and D is an (8� 2) matrix as given in [3]. The transformed state
equations are then

_z1 ¼ z3 � _xa; _z5 ¼ x7 � _xb;

_z2 ¼ z4 � z3; _z6 ¼ z8 � z7;

_z3 ¼ �ðS1z1 þ u1Þ=M1; _z7 ¼ �ðS3z5 þ u3Þ=M3;

_z4 ¼ au1 þ bu3; _z8 ¼ bu1 þ gu3:

In matrix form we therefore have

_z ¼ Azþ Buþ D _w;

where A is (8� 8) and B is (8� 2) as also given in [3] and

_w ¼ ½ _xa _xb�
0 ¼ ½dðt � T1Þ dðt � T2Þ�

0:

Partitioning the (8� 2) matrix D into columns D ¼ ½d1 d2� gives

d1 ¼ ½�1 0 0 0 0 0 0 0�0 and d2 ¼ ½0 0 0 0 � 1 0 0 0�0:

Hence,

_z ¼ Azþ Buþ d1dðt � T1Þ þ d2dðt � T2Þ:
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The performance index (3) may be written as

P ¼

Z 1

0

ðz0Qzþ u0RuÞdt

by introducing the diagonal matrices

Q ¼ diag½q1 q2 0 0 q3 q4 0 0�;

R ¼ diag½r1 r3�:

Expressions for the control forces in the optimally controlled system are set up in the following
section, based on the equations for a half-car model with preview as given in [3]. The feedback
gains and feedforward components of the control forces are determined from the solution of the
Riccati equation. In the practical case where the preview is turned off, however, the rms values
may be computed for any arbitrarily given set of feedback gains using the spectral decomposition
methods which follow.
4. The control equations

The optimal control forces u1 and u3 are components of the vector

uðtÞ ¼ �R�1B0fKzðtÞ þ pðtÞg;

where pðtÞ is (8� 1) and K is the (8� 8) positive definite symmetric matrix solution of the
algebraic Riccati equation

A0K þ KA � KBR�1B0K þ Q ¼ 0:

The system equation then becomes

_zðtÞ ¼ WzðtÞ � BR�1B0pðtÞ þ D _wðtÞ; (4)

where W is the optimal closed-loop system matrix

W ¼ A � BR�1B0K :

The preview function pðtÞ is the solution of the vector equation

_pþ W 0pþ KD _w ¼ 0: (5)

The solution of (5) for tX0 subject to the boundary condition pð1Þ ¼ 0 is given by the integral

pðtÞ ¼

Z 1

t

expðW 0ðt� tÞÞKD _wðtÞdt

¼ eW 0ðT1�tÞKd1UðT1 � tÞ þ eW 0ðT2�tÞKd2UðT2 � tÞ; ð6Þ

where UðtÞ is the unit step function.
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5. Solutions for the state vector

Eqs. (4) and (5) can be combined into a composite equation

_z

_p

� �
¼

W �BR�1B0

0 �W 0

" #
z

p

� �
þ

D

�KD

� �
_w:

The initial state is found from zð0Þ ¼ 0 and pð0Þ obtained from (6).
To find the rms values in the next section we need to convert the system to a diagonal form.
The eigenvalue equation in terms of (8� 8) submatrices is given by

W �BR�1B0

0 �W 0

" #
V11 V12

0 V22

� �
¼

V11 V12

0 V22

� �
L 0

0 �L

� �

and since L is in general complex, then the eigenvector matrix is also complex.
Multiplying out these equations gives

W V11 ¼ V11L; ð7Þ

�W 0 V22 ¼ � V22 L; ð8Þ

W V12 � BR�1B0V22 ¼ � V12 L: ð9Þ

Now (7) shows that V11 is the matrix of the right eigenvectors of W, and L is a diagonal matrix
of the eigenvalues of W, which because the system is stable, all have negative real parts.

Similarly, (8) shows that V22 is a matrix of the right eigenvectors of W 0: It is easily shown that if
U11 ¼ V�1

11 then V22 ¼ U 0
11 is a solution.

Lastly, (9) is a Lyapunov type equation which can be solved for V12: However, a more direct
method is to proceed as follows.

Now since U11WV11 ¼ L; the spectral decomposition of the matrices W and W 0 are

W ¼ V11LV�1
11 ;

W 0 ¼ V22LV�1
22 :

Then (9) becomes

V11 LV�1
11 V12 þ V12 L ¼ BR�1B0V22;

LF þ F L ¼ G;

where

F ¼ V�1
11 V12;

G ¼ V�1
11 BR�1B0V22:

The elements of F are easily found as

Fij ¼
Gij

li þ lj

;

V12 ¼ V11 F :
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The inverse of the composite eigenvector matrix is

U11 U12

0 U22

" #
¼

V11 V12

0 V22

" #�1

;

U11 ¼ V�1
11 ;

U22 ¼ V�1
22 ;

U12 ¼ � U11 V12 U22:

We now define

ya

yb

� �
¼

U11 U12

0 U22

� �
z

p

� �
:

Using (4) and (5) gives

_ya

_yb

� �
¼

L 0

0 �L

� �
ya

yb

� �
þ

U11 U12

0 U22

� �
D

�KD

� �
_w:

The solution to this equation is

yaðtÞ

ybðtÞ

� �
¼

eLt 0

0 e�Lt

� �
y0a

y0b

� �
þ

y1a

y1b

� �
Uðt � T1Þ þ

y2a

y2b

� �
Uðt � T2Þ

� �
;

where from (6) we have using W 0 ¼ V22LU22

pð0Þ ¼ eW 0T1Kd1 þ eW 0T2Kd2

¼ V22e
LT1U22Kd1 þ V22e

LT2U22Kd2

and

y0a

y0b

" #
¼

U11 U12

0 U22

" #
0

pð0Þ

" #
¼

U12V22ðe
LT1U22Kd1 þ eLT2U22Kd2Þ

eLT1U22Kd1 þ eLT2U22Kd2

" #
;

y1a

y1b

" #
¼

e�LT1ðU11 � U12KÞd1

�eLT1U22Kd1

" #
;

y2a

y2b

" #
¼

e�LT2ðU11 � U12KÞd2

�eLT2U22Kd2

" #
:
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We see later that for numerical reasons it is also useful to define the following:

ŷ0a

ŷ0b

" #
¼

eLT1 0

0 e�LT1

" #
y0a

y0b

" #

¼
eLT1U12V22ðe

LT1U22Kd1 þ eLT2U22Kd2

U22Kd1 þ eLðT2�T1ÞU22Kd2

" #
:

ŷ1a

ŷ1b

" #
¼

eLT1 0

0 e�LT1

" #
y1a

y1b

" #

¼
ðU11 � U12KÞd1

�U22Kd1

" #
:

ŷ2a

ŷ2b

" #
¼

eLT2 0

0 e�LT2

" #
y2a

y2b

" #

¼
ðU11 � U12KÞd2

�U22Kd2

" #
:

ŷ3a

ŷ3b

" #
¼

eLT2 0

0 e�LT2

" #
y0a

y0b

" #
þ

y1a

y1b

" #
þ

y2a

y2b

" #( )

¼
eLT2ðy0a þ y1a þ y2aÞ

0

" #
:

6. The rms values

Direct computation of the rms values for the control force, suspension stroke and tyre
deflection in the case of a quarter-car model with non-preview active suspension is described in [2]
where the method is based on the assumption that the power spectral density
of the random disturbance input xrðtÞ is approximated by that of integrated white noise, SrrðOÞ ¼
c=O2 m2s/rad.

We are now in a position to determine analytically the rms values for the components of z

and u:
First, we compute the matrix

Pyy ¼

Z 1

0

yðtÞ yyðtÞdt ¼

Z 1

0

yaðtÞ

ybðtÞ

� �
½yyaðtÞy

y

bðtÞ�dt;

where y is the complex conjugate transpose.
The elements of Pyy are easily calculated as

½Pyy�ði; jÞ ¼

Z 1

0

yðiÞ y�ðjÞdt
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¼

Z 1

0

eli t fy0ðiÞ þ y1ðiÞUðt � T1Þ þ y2ðiÞUðt � T2Þg

� fy�0ðjÞ þ y�1ðjÞUðt � T1Þ þ y�2ðjÞUðt � T2Þg e
l�j t dt

¼ �
1

li þ l�j
ðP0 þ P1 þ P2Þ;

P0 ¼ y0ðiÞy
�
0ðjÞ;

P1 ¼ ŷ0ðiÞŷ
�
1ðjÞ þ ŷ1ðiÞŷ

�
0ðjÞ þ ŷ1ðiÞŷ

�
1ðjÞ;

P2 ¼ ŷ3ðiÞŷ
�
2ðjÞ þ ŷ2ðiÞŷ

�
3ðjÞ � ŷ2ðiÞŷ

�
2ðjÞ:

For the case where li þ l�j ¼ 0 the result is
½Pyy�ði; jÞ ¼ �ðP1T1 þ P2T2Þ:

This formulation avoids the numerical problems associated with the exponentials of large
quantities which can occur at low vehicle velocities as T1 and T2 become large.

Now

z

p

� �
¼

V11 V12

0 V22

� �
ya

yb

� �

so

Pzz ¼

Z 1

0

z zy dt

¼ ½V11 V12�Pyy

V
y

11

V
y

12

" #
: ð10Þ

Also from the relation

u ¼ �R�1B0 K I

 � z

p

� �
¼ �R�1B0L

ya

yb

� �

L ¼ ½KV 11 KV 12 þ V22�

we obtain

Puu ¼

Z 1

0

u uy dt

¼ R�1B0L Pyy LyBR�1: ð11Þ

The diagonal elements of Pzz and Puu are the required integral-squared values which can be
converted to mean-square values using (2). In contrast to other methods [4,5], the method does
not become numerically ill-conditioned at low velocities.

If required, the performance index can also be computed from the mean-square values of the
components of z and u:

If the matrix W has repeated eigenvalues, then in general the matrix L is not diagonal and the
calculation of mean square values becomes much more complicated. This situation is extremely
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unlikely to occur in practice and for the system considered the eigenvalues were �26:303�
j78:270; �19:207� j56:595; �7:8514� j9:6223 and �6:4965� j7:8652; and were independent of
the vehicle speed.
7. Example

For example purposes, the following numerical data is assumed:

M1 ¼ 28:58 kg; M3 ¼ 54:43 kg; M ¼ 505:1kg;

S1 ¼ 155 900N=m; S3 ¼ 155 900N=m; J ¼ 651:0 kgm2;

a ¼ 1:0978m; b ¼ 1:4676m; L ¼ 2:5654m;

c ¼ 10�5 m; q1 ¼ q5 ¼ 10; q2 ¼ q6 ¼ 1;

Ps ¼ 1:0000m; r1 ¼ r3 ¼ 0:8� 10�9:

The performance index as computed from the integral-square values and their weighting factors
for a unit step as well as the rms values computed from Eqs. (10) and (11) are shown in Table 1 for
V ¼ 20m=s (72 km/h) and V ¼ 30m=s (108 km/h).

These results agree perfectly with results found by different methods [3,5]. Assuming a tyre
compression at static equilibrium of dt ¼ 2 cm and an available wheel free travel of dw ¼ 6:3 cm;
the 3s limits are not exceeded.

Figs. 2–4 show plots of computed rms tyre deflections, wheel clearances and control forces,
respectively. The results have been calculated down to speeds of 0.1m/s with no numerical
problems. Generally all rms values tend to increase with speed and ultimately determine the
maximum speed at which it is safe to travel.

Fig. 5 shows the performance index both with and without preview, and it can be seen that the
use of preview reduces the performance index significantly.

It is to be noted that the computations are based on ideal active suspensions in which the
desired actuator forces are achieved exactly. Practical systems may depart from this assumption as
described in Refs. [9,10] or in other designs where additional compensating dynamics may be
introduced.
Table 1

V ¼ 20m=s V ¼ 30m=s

Ps ¼ 1 Ps ¼ 0 Ps ¼ 1 Ps ¼ 0

Perf index P 0.41699 0.50355 0.46289 0.52956

Front sðz1Þ 2.77mm 4.10mm 3.77mm 5.02mm

Front sðz2Þ 9.71mm 9.60mm 13.4mm 11.9mm

Rear sðz5Þ 3.18mm 3.32mm 4.04mm 3.95mm

Rear sðz6Þ 6.32mm 6.52mm 8.17mm 9.58mm

Front sðu1Þ 386.5N 400.2N 482.5N 489.1N

Rear sðu3Þ 340.0N 338.5N 409.6N 455.5N



ARTICLE IN PRESS

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

Velocity v (m/s)

R
M

S
 D

ef
le

ct
io

n 
σ 

(m
m

)

σ (z
1
) σ (z

5
)

P
s
 = 0

P
s
 = 1

Fig. 2. RMS tyre deflections (front and rear).
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Fig. 3. RMS wheel travel variations (front and rear).
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8. Conclusion

A technique for computing rms values and the performance index has been demonstrated. The
method is more concise than simulation methods or previous methods of direct computation, and
is easily implemented in MatlabR:
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